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ABSTRACT 

 
In this paper a new logical operation method called “

presented. It is used to calculate the difference, but also the complement of a function as well as 

the EXOR and EXNOR of two minterms respectively two ternary

respectively two ternary-vector

logical operation method called “orthogonal OR

advantages of both methods are their results, which are already available

form that has an essential advantage for continuing calculations. Since it applies, an orthogonal 

disjunctive normal form is equal to orthogonal antivalence normal form, subsequent Boolean 

differential calculus will be simplified.
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1. INTRODUCTION 
 

Orthogonality is a special property of Boolean functions because an orthogonal function can be 

transformed in another form and so it simplifies the handling for further calculations in 

applications of electrical engineering. For example, the orthogonal for

equal to the orthogonal form of an antivalent form, 

orthogonalizing methods, which means a new method of OR

the difference of minterms respec

vector-lists (TVL) of disjunctive normal form which result in orthogonal form. On the one hand, 

the method “othogonalizing difference

derived from the set theory, but, on the other hand, it provides orthogonal results. It also enables 

the replacement of EXOR and EXNOR of two minterms (also TVs) or two functions (also 

TVLs). Thus, orthogonal results can be achieved which has essential advanta

calculation in particular in the area of TVL

ing    ” offers the logical disjunction of two minterms respectively two TVs with the characteristic 

of the resulting in orthogonal form.
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the EXOR and EXNOR of two minterms respectively two ternary-vectors or two func

vector-lists is presented. On the basis of this new method a further 

gical operation method called “orthogonal OR-ing” is going to be introduced. The 

advantages of both methods are their results, which are already available in an orthogonal 

form that has an essential advantage for continuing calculations. Since it applies, an orthogonal 

disjunctive normal form is equal to orthogonal antivalence normal form, subsequent Boolean 

differential calculus will be simplified. 
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2. THEORETICAL FOUNDATIONS 
 

2.1. Isomorphism: Set Theory as Basis for Switching Algebra 
 

In Figure1a), the set difference from the set theory is shown. If the set difference is called�\�, 

the remaining set of these two sets is the set of all elements belonging to set �, but not to set � 

(�without �). In Figure1b), the union of set �� and ��, that is�� ∪ ��, is illustrated [2][3]. 

 

 
Figure 1: a) Set Difference �\�; b) Set Union �� ∪ �� 

 

Due to the isomorphism the set difference and the set union out of the set theory are expressed in 

the propositional logic as follows: 

 

 

 �� 	 �\� 	 � ∩ �̅      ↣     � ∧ �̅ (1) 

  �� 	 �� ∪ ��                    ↣     �� ∨ �� (2) 

 

Thus, an Equation (3) to build the difference of two minterms in the switching algebra is defined 

out of (1). The minuend minterm is indentified with�� ≔ ⋀ �������� ! , the subtrahend minterm 

is indentified with �" ≔ ⋀ ���#���# !  and with $ ∈ ℕfollows: 

 

 

��\�" 	 '( �������
� ! )\'(���#���

# ! ) ≔ '( �������
� ! ) ∧ '(���#���

# ! )*************** 	 

 

 	 '( �������
� ! ) ∧ '+�̅������

# ! ) 	 ,�� ⋅ ���� ⋅. .⋅ ��/�  ∧ ,�� ⋅ ���� ⋅. .⋅ ��/" 

 

(3) 

 

An Equation (4) building the disjunction of two minterms where the first summand minterm is  
identified with �"0 ≔ ⋀ ���#0���#0 !  and the second summand minterm is identified with �"1 ≔⋀ ���#1���#1 ! is defined out of (2). And with $ ∈ ℕ follows: 

 

�"0 ∨ �"1 	 2( �������
#0 ! 3 ∨ 2( ���#���

#1 ! 3 	 ,�� ⋅ ���� ⋅. .⋅ ��/"0 ∨ ,�� ⋅ ���� ⋅. .⋅ ��/"1  

(4) 

 

Equation (3) and (4) only indicate the value of the variable at the corresponding position in terms 

of its index. That means �̅4is the complement value of variable at thei-th place, whereas�4 hows 

the value of the variable at the i-th place. The general validity is proved by the method of 

mathematical induction. 
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2.2. Ternary-Vector-List (TVL) 

 
Ternary-Vector-Lists are representations of Boolean functions which can take one of three 

possible values for each point. A non-negated variable is characterized by ‘1’, a negated by ‘0’ 

and not included by ‘-‘. Boolean equations represented by TVL can be treated computationally 

easier [5][10]. A TVL consists of m-rows (number of conjunctions or disjunctions contained in 

the function) and n-columns (number of independent variables) and is characterized with$ ∈ℕand 5 ∈ {0, 1, −}. Any form of a function, that means disjunctive form (DF), conjunctiveform 

(KF), equivalent form (EF) and antivalence form (AF), can be represented as a TVL. As no 

operators (∨, ∧,⨀,⨁ ) in the TVL presentation are given, the designations of the matrix by D(f), 

K(f), E(f) and A(f) show the type of the TVL [5][10][12]. 

                                  ��   …   ���� 

?@A 	 B?@�?@�∶?@�D ≔
1. EFG2. EFG∶�. EFG B

5��5��∶5��
……∶…
5��5��∶  5��

5��5��∶5��D 	 [5��] 
 

 

(5) 

The rule for AND-ing (∧) of two TVs (?@4,K) which represent an average TV (?@L), is defined by 

Table 1: 
 

Table 1. Rule for AND-ing of two TVs 

 ∧ 0 1 - 

0 0 × 0 

1 × 1 1 

- 0 1 - 
 

 if × ≥ 1 

 else 

×: empty set ?@L 	×  
 ?@L 	  ?@4 ∧ ?@K 

 

The rule for OR-ing (∨) of two TVs (?@4,K), which represent the union of both TVs, is defined as 

follows: ?@4 ∨  ?@K 	 Y?@4?@KZ (6) 

 

The difference-building of two TVs with ?@� 	 [5�, 5���, . . , 5�]� and ?@" 	 [5�, 5���, . . , 5�]" is 

distinguished out of Equation (3): 

 ?@�\ ?@" 	 [5�, 5���, . . , 5�]�\ [5�, 5���, . . , 5�]" ≔ [5�, 5���, . . , 5�]� ∧ [5�, 5���, . . , 5�]"******************** 	 

	 [5�, 5���, . . , 5�]� ∧ B5�̅ −− 5���******⋮− ⋮−
… −… −⋮… ⋮5�̅D" 

  

(7) 

 

2.3. Orthogonality 

 
A function or TVL is orthogonal if its minterms respectively its TVs are disjoint to one another in 

pairs at least in one column. Consequently, these minterms (�4,K) or these TVs (?@4,K) then have 

no common covering after their logical conjunction. An orthogonal function has no redundant 

minterm. Thus, the following Equations in (8) can be formulated for the proof of orthogonality 

[17]: 
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3. ORTHOGONALIZING D

 
3.1. Method 

 

The method of orthogonalizing difference

corresponds to the removal of the intersection which is formed between the minuend 

subtrahend �", from the minuend 

several disjoint minterms, which cover all of the remaining 1s an

other. For this purpose, an example is shown in a K

group of 2 (subtrahend: �\����) is subtracted from group of 8 (minuend: 

of several blocks (1
st
 Block, 2

nd
 Block, 3

 �]̂_`abcad⊝ �\efbghijkcad
• The first literal of the subtrahend, here 

minterm of the minuend, here 

• Then the second literal, here

minuend and to the first literal �]�\��***. 
• Following the next literal, hier 

the minuend and to the first literal 

third block of the difference is 

• This process is continued until all literals of the subtrahend are singly complemented and 

linked by AND-ing to the minuend in a separate minterm.

 

The Equation (9) is applied to calculate the orthogonalizing difference

In this case, the formula does not show the value of the individual literals, but it shows whether 

the associated literal exists complement or not. The indices declare only the order of literals 

which have to be calculated. In thi

formed from [18] is applied to describe the orthogonalizing difference

mathematically easier way: 
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DIFFERENCE-BUILDING ⊝  

The method of orthogonalizing difference-building ⊝ illustrated in the Karnaugh map (Fig

corresponds to the removal of the intersection which is formed between the minuend 

from the minuend ��, which means ��\ ,�� ∧ �"/. The result consists of 

several disjoint minterms, which cover all of the remaining 1s and are pairwise orthogonal to each 

other. For this purpose, an example is shown in a K-map with 4 variables (Fig. 2

) is subtracted from group of 8 (minuend: �]). The resu

Block, 3
rd

 Block) which are pairwise orthogonal to each other.

Figure 2: Example of ⊝ in a K-map 

�\����elmlnfbghijkcad 	 �]�\***o�pqrstuv  ∨  �]�\��***elmln�wxrstuv  ∨  �]�\����***ellmlln\yxrstuvelllllllllmlllllllllnz`{{cicauc
 

The first literal of the subtrahend, here �\, is taken complement and AND

minterm of the minuend, here �]. Consequently, the first block of the difference is 

Then the second literal, here��, is taken complement and AND-ing to the minterm of the 

minuend and to the first literal �\ of the subtrahend. Therefore, the second block is 

Following the next literal, hier ��, is taken complement and AND-ing to the minterm of 

the minuend and to the first literal �\ and second literal �� of the subtrahend. Thus, the 

of the difference is �]�\����***. 
This process is continued until all literals of the subtrahend are singly complemented and 

ing to the minuend in a separate minterm. 

is applied to calculate the orthogonalizing difference-building of two minterms. 

In this case, the formula does not show the value of the individual literals, but it shows whether 

the associated literal exists complement or not. The indices declare only the order of literals 

which have to be calculated. In this case, the formula ,⋁ �}~��4 � 	 ��*** ∨ ����*** ∨. .∨
formed from [18] is applied to describe the orthogonalizing difference-building in a 

 

illustrated in the Karnaugh map (Fig. 2) 

corresponds to the removal of the intersection which is formed between the minuend ��and the 

The result consists of 

d are pairwise orthogonal to each 

. 2),in which a 

). The result consists 

Block) which are pairwise orthogonal to each other. 

 

, is taken complement and AND-ing to the 

. Consequently, the first block of the difference is �]�\***. 
ing to the minterm of the 

of the subtrahend. Therefore, the second block is 

ing to the minterm of 

of the subtrahend. Thus, the 

This process is continued until all literals of the subtrahend are singly complemented and 

building of two minterms. 

In this case, the formula does not show the value of the individual literals, but it shows whether 

the associated literal exists complement or not. The indices declare only the order of literals * ∨ ���� ⋅. .⋅ ��***/ 
building in a 
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 ��⊝�" 	 '( �������
� ! )⊝ '(���#���

# ! ) ≔ '( �������
� ! ) ∧ 2+ �̅��#����

# ! 3 	   

 	 ,�� ⋅ ���� ⋅. .⋅ ��/�  ∧ ,�̅�  ∨ ���̅��� ∨. .∨ �� ⋅ ���� ⋅. .⋅ ��/" (9) 

The result may differ depending on the starting literal. There are many equivalent options. They 

only differ in the form of coverage. The minterms of the difference are pairwise disjoint to each 

other, so that the result is already availabe in an orthogonal form. The the result corresponds to 

the minuend if the subtrahend is already orthogonal to the minuend (�� ⊥ �"): 

 

 ��:�" ⊈ ������:��⊝�" 	 �� (10) 

The number of the minterms (blocks) in the result called $ corresponds to the number of the 

variables presented in the subtrahend and are not presented in the minuend at the same time. The 

number of the possible results can be defined by $! for $ > 0. The orthogonalizing difference-

building of two TVs (?@� , ?@"), is defined by a corresponding Equation (11): 

 ?@�⊝  ?@" 	 [5�, 5���, . . , 5�]�⊝ [5�, 5���, . . , 5�]" ≔  
 	  [5�, 5���, . . , 5�]� ∧ B5�̅ −5� 5���******⋮5� ⋮5$

… −… −⋮… ⋮5�̅D" 

 

(11) 

 

By the use of this new method, two calculation procedures - building the difference and the 

subsequent orthogonalization - can be performed in one step. That means that the orthogonalizing 

difference-building ⊝represents the composition of the difference-building \and the subsequent 

orthogonalization Orth [6]. 

 

3.2. Analysis 
 

3.2.1. Mathematical 
 

The general validity is proved by mathematical induction: 

 

Basis: n = 1 

 '( ���� ���
� ! ) ∧ '+�̅��# ���

# ! ) 	 ,��/� ∧ ,�̅�/" 

 

 ,��/� ∧ ,�̅�/" 	 ,��/� ∧ ,�̅�/"  

Statement is true: 

 

Inductive step: n =  n + 1 

 

 '( �,���/�� �
� ! ) ∧ 2+�̅,���/�# ��

# ! 3 	 ��,���/������. . ���� ∧ ��̅,���/ ∨ �,���/,�̅�  ∨ ���̅��� ∨. .∨ �� ⋅. .⋅ ��/�" 

 

 '�,���/(�������
� ! ) ∧ 2�̅,���/ ∨ �,���/ + �̅��#����

# ! 3 	 '�,���/(�������
� ! ) ∧ 2�̅,���/ ∨ �,���/ + �̅��#����

# ! 3 

 

The new Equation (3) is equated with the usual Equation (9) to show the equivalence. Since the 

term of the minuend (⋀ �������� ! ) is equal on both sides, it can be neglected: 
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 '+��# 
 �̅� ∨ �̅���
Due to the axiom of absorption with 

confirmed. They only differ in their form of coverage. The right side is the orthogonal form of the 

left side. This proves that the orthogonalizing difference

the difference-building derived out of the set theory.

 

3.2.2. Computing Time 

 
A study between usual and new method in computing time depe

(dimension���[�])  of the minuend and subtrahend indicates almost identical co

The new method (orth_Diff)  has a slightly longer computing time with increasing dimension than 

the method of difference-building (

shows a maximum difference of just 1.2

complexity.  The supplementation instruction per loop iteration results in a multiplicative 

constant which explains the minimal difference. Against it, the results are orthogonal. The 

comparison in Figure 3 illustrates that the method 

increasing dimension ���[�] as the composition of method 

orthogonalizing  Orth  [19]. 

Figure 3: Comparison of computing time of 

In Diagram (Fig. 4) the explanation for the higher computing time of the composition is provided. 

With increasing dimension the computing 

Diff decreases with respect to the composition. In dimension 

same percentage value of the whole computing time. Thereafter, the percentage value of 

low and at the same time the percentage value of 
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'+�̅��#��
 ! ) 	 2+ �̅��#����

# ! 3 

� ∨. .∨ �̅� 	 �̅� ∨ ���̅��� ∨. .∨ ������ ⋅. .⋅ ���̅� 

Due to the axiom of absorption with �}~ ∨ �4��~ 	 �}~ ∨ ��~ , the equivalence between two methods is 

confirmed. They only differ in their form of coverage. The right side is the orthogonal form of the 

proves that the orthogonalizing difference-building supplies equivalent results as 

building derived out of the set theory. 

A study between usual and new method in computing time depending on the length 

of the minuend and subtrahend indicates almost identical computing times. 

has a slightly longer computing time with increasing dimension than 

building (Diff).  The comparison of the average values of both methods 

shows a maximum difference of just 1.2µs, which can be explained by the consideration 

The supplementation instruction per loop iteration results in a multiplicative 

the minimal difference. Against it, the results are orthogonal. The 

illustrates that the method orth_Diff  has faster computing ] as the composition of method Diff  and the subsequent method of 

 

 
Figure 3: Comparison of computing time of orth_Diff⊝ and composition of Diff and 

 

) the explanation for the higher computing time of the composition is provided. 

With increasing dimension the computing time of the method Orth increases, whereas the method 

decreases with respect to the composition. In dimension ���[14] both functions have the 

same percentage value of the whole computing time. Thereafter, the percentage value of 

the same time the percentage value of Orthincreases. 
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mputing times. 
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The supplementation instruction per loop iteration results in a multiplicative 

the minimal difference. Against it, the results are orthogonal. The 

has faster computing time with 

uent method of 

and Orth 

) the explanation for the higher computing time of the composition is provided. 

increases, whereas the method 

both functions have the 

same percentage value of the whole computing time. Thereafter, the percentage value of Diffruns 
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Figure 4: Percentage value of whole computing of 

 

At the dimension���[50]the share of computing time of 

percentage value of Diffis 6.7 %. Finally, 

the new method orth_Diff brings a significant advantage due to the orthogonal results [19].

 

3.2.3. Complexity 

 
The complexity of both methods is analyzed by the evaluation of their implemented functions.

The dimension of the inserted minterms respectively ternary

size �. Figure 5 shows the pseudocode of 

according to the rules of the 

accordingly comparisons and two inte

complexity is �,��/  [19]. The complexity of the function 

not required and may be replaced by three linear operations with the complexity of 

 

Figure 5

However, the additive and multiplicative constants have no influence on th

omitted for this reason. Although the total complexity of the usual method is minor but it 

increases in total by an additional code for orthogonalization.
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the share of computing time of Orth is already 93.7 

%. Finally, the measurement of computing time demonstrates that 

brings a significant advantage due to the orthogonal results [19].

The complexity of both methods is analyzed by the evaluation of their implemented functions.

The dimension of the inserted minterms respectively ternary-vectors is determined as the input 

shows the pseudocode of orth_Diff. For the function orth_Diff

according to the rules of the �-calculus many complexities of �,1/ for instructions and 

accordingly comparisons and two interleaved nested complexities of�,1/. As the result, the total 

[19]. The complexity of the function Diff is �,�/ because the inner loops are 

not required and may be replaced by three linear operations with the complexity of �

 

 

5: Pseudocode of orth_Diff with complexity 

 

However, the additive and multiplicative constants have no influence on the complexity and are 

omitted for this reason. Although the total complexity of the usual method is minor but it 

increases in total by an additional code for orthogonalization. 

                                     15 

is already 93.7 % and the 

the measurement of computing time demonstrates that 

brings a significant advantage due to the orthogonal results [19]. 

The complexity of both methods is analyzed by the evaluation of their implemented functions. 

s determined as the input 

orth_Diff is obtained 

for instructions and 

esult, the total 

because the inner loops are �,1/ (Fig. 6). 

e complexity and are 

omitted for this reason. Although the total complexity of the usual method is minor but it 
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Figure 6: Pseudocode of Diff with complexity 

 

3.2.4. Data Memory Request 

 
First, the memory request of the data structures TV and TVL is determined for this comparison 

[19]. A TV consists of an array of � ⋅ byte elements. Each byte represents an element of the 

ternary variables. This means that the memory request of the data structures depends on the 

dimension of the ternary variables. In C# the data type Byte consists of 8Bits. For a 64 bit system 

a minimum memory request ����,�/for the data structure of TV with an addressing pointer is 

calculated by: 

 

 ����,�/ 	 � ⋅ 8 ��5�ellmlln�⋅������ �����# + 32 ��5�elmln£�4���� ¤� �� (12) 

 

Since a TVL consists of a list of TVs. The memory request of a TVL depends on the number of 

ternary variables and also the number of the consisting TVs called ¥. The easiest way to 

implement a list is the use of a linked list. Each entry in the list has a pointer at its follower. Thus, 

a minimal memory request ����¦,¥,�/is calculated by: 

 

 ����¦,¥,�/ 	 ¥ ⋅ ����,�/ + 32 ��5�elmln£�4���� ¤� ��¦ (13) 

 

For this reason, the minimal total memory request����� for the operation of two TVs, the 

difference-building and orthogonalizing difference-building in this case is: 

 

 ����� 	 2 ⋅ ����,�/elllmllln��§&��© + ����¦,¥,�/elllmlllnª�#« ����¦  (14) 

 

The theoretical memory request has to be calculated equally for both function. Because of that, 

they have the same minimal memory request. Addional memory request for a function for 

orthogonalization is not needed, because an orthogonal TVL of the orthogonalizing difference is 

already provided. That shows that the new method, which is the composition of two functions has  

the advantage of reducing the memory request in addition to faster computing time. The minimal 

theoretical memory request depending on the dimension ���[�]and the number of n which 

primarily affects the memory usage is illustrated in Figure 7. Thereby, ���[�] is varied at a 

constant n and afterwards in the reverse case and analyzed on memory request. For 

constant���[�]and changing $the memory usage is higher than in the reverse case. It 

applies∆�����,$/ 	 ∆�����,���[�]/. 
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Figure 7: Minimal theoretical memory request 

 

3.3. Applications of Orthogonalizing Difference

 
3.3.1. Orthogonalizing Difference

 
By Equation (14) (presented in TVL

it is possible to calculate an orthogonal difference of two functions respectively two TVLs. One 

of them is the minuend function 

subtrahend function ­". The minuend is subducted the common set of subtrahend and minuend; 

the result is represented in an orthogonal form. The associated minterms (TVs) have the 

corresponding index-notation, which means 

subtrahend: 

 ��­������ ⊝  �,­"/ 	 B?@��?@��∶?@��
 

 	 B ,?@�,?@�,?@��
 

In this case it is important to stress that any outcome of each individual 

considered. That means, if the combination of 

complete the appropriate row to 0

building has already been proved in general validity, there is no need proof for generel validity in 

this case, because all the single links are generally valid. Therefore, out of logical conclusion, 

Equation (14) is generally valid. If two functions are disjoint to each other (

difference cannot be formed and it follows:

 

 ��
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Figure 7: Minimal theoretical memory request  

Applications of Orthogonalizing Difference-Building 

Difference-Building of two Functions 

(presented in TVL-arithmetic) based on the orthogonalizing difference

it is possible to calculate an orthogonal difference of two functions respectively two TVLs. One 

ion ­�����which has to be orthogonal and the other one is the 

. The minuend is subducted the common set of subtrahend and minuend; 

the result is represented in an orthogonal form. The associated minterms (TVs) have the 

notation, which means � stands for the minuend and � stands for the 

��
��
D ⊝ B?@�"?@�"∶?@�"D : 	 

 

 

, ��⊝?@�"/ ∧ ,?@��⊝?@�"/ ∧. .∧ ,?@��⊝?@�", ��⊝?@�"/ ∧ ,?@��⊝?@�"/ ∧. .∧ ,?@��⊝?@�"∶, ��⊝?@�"/ ∧ ,?@��⊝?@�"/ ∧. .∧ ,?@��⊝?@�"
In this case it is important to stress that any outcome of each individual ⊝-linkings has to be 

considered. That means, if the combination of ,?@��⊝?@�"/ 	 0 arises for example, this will 

omplete the appropriate row to 0 because of: �4 ∧ 0 	 0. Since the orthogonalizing difference

building has already been proved in general validity, there is no need proof for generel validity in 

ingle links are generally valid. Therefore, out of logical conclusion, 

is generally valid. If two functions are disjoint to each other (­�
difference cannot be formed and it follows: 

��: ­" ⊈ ­�����: ­�⊝­" 	 ­� 
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arithmetic) based on the orthogonalizing difference-building 

it is possible to calculate an orthogonal difference of two functions respectively two TVLs. One 

which has to be orthogonal and the other one is the 

. The minuend is subducted the common set of subtrahend and minuend; 

the result is represented in an orthogonal form. The associated minterms (TVs) have the 

stands for the 

//
�"/D 

 

(14) 

linkings has to be 

arises for example, this will 

Since the orthogonalizing difference-

building has already been proved in general validity, there is no need proof for generel validity in 

ingle links are generally valid. Therefore, out of logical conclusion, ⊥ ­") then a 

(15) 



18 Computer Science & Information Technology (CS & IT) 

 

3.3.2. Orthogonal Complement of a Function 

 
A further application is the building of an orthogonal complement of a function of the disjunctive 

normal form. In the set theory the set difference of universal set ®and a set 
corresponds to set 
̅which is the complement of the given set 
: 

 

 
 

 ® \
 	 
̅     →     ® ∩ 
̅ 	 
̅ (16) 

Transferred to the switching (Boolean) algebra the complement of a function ­,̅�/ can be 

determined from the difference of a unit function ­��� 	 1 and the function ­,�/: 
 

 ­,1/ \­,�/ 	 ­̅,�/     →     ­,1/ ∧ ­,̅�/ 	 ­,̅�/ (17) 

 

As both methods are equivalent, Equation (17) can be formulated with ⊝ to find out an 

orthogonal complement: 

 

 ­,1/  ⊝ ­,�/ 	 ­�̅������or    �,1/  ⊝ �,­/ 	 �,­̅����/ (18) 

 

3.3.3. Orthogonal EXOR of two Functions 
 

The EXOR-operation of two minterms �4,Kand also of two functions ­4,Kcan be calculated as: 

 

 ­4⊕­K 	 ­4­K̅ ∨ ­4̅­K 	  

 	 ,­4 ∨ ­K/ ∧ ,­4̅ ∨ ­K̅/ 	  

 	 ,­4 ∨ ­K/ ∧ ,­} ∧ ­�/********** 	  

 	 ,­4 ∨ ­K/\,­4 ∧ ­K/ 	 (19) 

It may be formulated with ⊝ due to the equivalence to get orthogonal result: 

 

 ­4⊕­K 	 ,­4 ∨ ­K/⊝ ,­4 ∧ ­K/ (20) 

By AND-ing and OR-ing of the functions ­4,Kan inherent relation between these two functions is 

constructed.Thus, the minuend function does not need to be orthogonal. The advantage is the 

orthogonal result again. By using ⊝ the difficulties which arise with the building of the 

complement of a function are circumvented. The form of the function changes by building the 

complement and the transformation back to its original form requires a more sophisticated 

calculation. 

 

3.3.4. Orthogonal EXNOR of two Functions 

 

The EXNOR-operation of two minterms �4,Kor two function­4,Kis basically the complement of the 

EXOR-operation of the same minterms or functions. The EXNOR can be expressed by the 

complement of EXOR, which also can be formulated by using ⊝. Accordingly, the result is 

orthogonal: 

 

 ­4  ⊙ ­K 	 ­}⊕­�********* 	 ­,1/ ⊝ �­4⊕ ­K� 	 ­,1/ ⊝ [,­4 ∨ ­K/⊝ ,­4 ∧ ­K/] (21) 
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v 

3.3.5. Orthogonalizing OR-ing 

 
Another method, the orthogonalizing OR-ing, which is based on the orthogonalizing difference-

building, is formed in the following. The orthogonalizing OR-ing      is a variant of building the 

disjunction of two summand-minterms (��, ��) whereby the result is orthogonal. Orthogonalizing 

OR-ing is going to be explained by an example in a K-map with 4 variables (Fig. 8). Two 

summand-minterms (a group of 8 and a group of 4) are orthogonalizing OR-ed and a result 

consisting of several blocks appears; the several blocks are pairwise orthogonal to each other. 

 

 
Figure 8: Orthogonalizing OR-ing in K-map 

 
The idea out of the K-map is noted as propositional logic which a Boolean form is going to be 

derived. By the use of orthogonalizing OR-ing, the intersection set of first and second summand-

minterm (��, ��) is removed from the first summand-minterm ��and the second summand-

minterm �� is linked by a disjunction to that subtraction: 

 

 
 

 
 

The Boolean form of orthogonalizing OR-ing of two minterms �"0 	 ⋀ ���"0���"0 ! and �"0 	 ⋀ ���"1���"1 ! is defined by Equation (24), which does not give the value of separate literals, but it 

shows whether the value of the variable is complement or not. The indices only indicate the order 

of the variables to be calculated: 
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v 

 
 

By swapping the two summands in their position, the result changes. Both solutions, however, are 

equivalent because the same set is covered. They only differ in the form of coverage which also 

be seen in Figure 8, in which both possible solutions are presented. But in order to represent the 

orthogonal result with a minimum of minterms to work in the TVL-representation with low 

memory request, the summand-minterm with more literals has to be accepted as the first 

summand-minterm,because the commutativity applies for      and also for ⊝. The following 

Equation (25) is used for the orthogonalizing OR-ing of two ternary vectors  ?@"0 	  [5� , 5���, . . , 5�]"0and  ?@"1 	 [5�, 5���, . . , 5�]"1: 
 

 
 

The number of the minterms in the result called $ corresponds to the number of the variables 

presented in the second summand �"1 and are not presented in the first summand �"0at the same 

time; plus1 for the second summand �"1 as the last linked minterm. The number of the possible 

results can be charged by $!for $ > 0. Depending on the starting literal the result may differ. 

There are many equivalent options which only differ only in the form of coverage. If both 

minterms are disjoint (orthogonal) to each other, the result corresponds to the disjunction of both 

minterms: 

 
 

By the use of orthogonalizing OR-ing , two calculation procedures - OR-ing and subsequent 

orthogonalizing - can be performed in one step. That means that the orthogonalizing OR-ing  

is the composition of OR-ing (∨) and the subsequent orthogonalization Orth. 

 

It is not necessary to prove this method for general validity because it includes the already general 

method of orthogonalization difference-building. The Equations (23) and (2) are equalized to 

indicate the equivalence of orthogonalization OR-ing and usual OR-ing: 

 

 ����*** ∨ �� 	 �� ∨ �� (27) 

Due to the axiom of the absorption the equivalence is verified. The right side is the orthogonal 

form of the left side which means they only differ in the form of coverage. So, the results of both 

sides are equal. 
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4. CONCLUSION  
 
This work shows that the method of the orthogonalizing difference-building is generally valid and 

is also equivalent to the usual method of difference-building. In contrast to the composition, 

orthogonalizing difference-building has faster computing time with increasing dimension. In 

addition, the method does not require additional memory request for an additional function for 

orthogonalization because this method already provides orthogonal results. The orthogonalizing 

difference-building is used to calculate the orthogonal difference of two minterms respectively 

two TVs, two functions or two TVLs. It is also employed to determine the complement of a 

function as well as the EXOR and EXNOR of two functions to achieve an orthogonal result. 

Another method, the orthogonalizing OR-ing of two minterms or TVs, is developed out of the 

orthogonalizing difference-building. The application of ternary-vector-list is amplified by these 

new methods to implement simple and quick elementary functions. Due to the inner 

orthogonalization further processing steps in the TVL arithmetic are considerably simplified 

because the orthogonal form of disjunctive normal form has the advantage to consider it as 

antivalence normal form. Thus, additional calculation such as the differential calculus are 

remarkably facilitated. 
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