

Jan Zizka et al. (Eds) : CCSEIT, MoWiN, IT, AIAP, ICBB

pp. 09–22, 2015. © CS & IT-CSCP 2015

BOOLEAN

COMBINATION

Yavuz Can

1,2
Institute for Electronics Engineering (LTE),

Friedrich-Alexander University

ABSTRACT

In this paper a new logical operation method called “

presented. It is used to calculate the difference, but also the complement of a function as well as

the EXOR and EXNOR of two minterms respectively two ternary

respectively two ternary-vector

logical operation method called “orthogonal OR

advantages of both methods are their results, which are already available

form that has an essential advantage for continuing calculations. Since it applies, an orthogonal

disjunctive normal form is equal to orthogonal antivalence normal form, subsequent Boolean

differential calculus will be simplified.

KEYWORDS

Difference-Building, Orthogonality, TVL, Data Memory Request, Computing Time

1. INTRODUCTION

Orthogonality is a special property of Boolean functions because an orthogonal function can be

transformed in another form and so it simplifies the handling for further calculations in

applications of electrical engineering. For example, the orthogonal for

equal to the orthogonal form of an antivalent form,

orthogonalizing methods, which means a new method of OR

the difference of minterms respec

vector-lists (TVL) of disjunctive normal form which result in orthogonal form. On the one hand,

the method “othogonalizing difference

derived from the set theory, but, on the other hand, it provides orthogonal results. It also enables

the replacement of EXOR and EXNOR of two minterms (also TVs) or two functions (also

TVLs). Thus, orthogonal results can be achieved which has essential advanta

calculation in particular in the area of TVL

ing ” offers the logical disjunction of two minterms respectively two TVs with the characteristic

of the resulting in orthogonal form.

Jan Zizka et al. (Eds) : CCSEIT, MoWiN, IT, AIAP, ICBB - 2015

CSCP 2015 DOI : 10.5121/csit.2015.51102

OOLEAN ORTHOGONALIZING

OMBINATION METHODS

Yavuz Can
1
and Georg Fischer

2

Institute for Electronics Engineering (LTE),

Alexander University, Erlangen-Nuremberg, Germany
yavuz.can@fau.de

georg.fischer@fau.de

ogical operation method called “orthogonalizing difference-building”

presented. It is used to calculate the difference, but also the complement of a function as well as

the EXOR and EXNOR of two minterms respectively two ternary-vectors or two func

vector-lists is presented. On the basis of this new method a further

gical operation method called “orthogonal OR-ing” is going to be introduced. The

advantages of both methods are their results, which are already available in an orthogonal

form that has an essential advantage for continuing calculations. Since it applies, an orthogonal

disjunctive normal form is equal to orthogonal antivalence normal form, subsequent Boolean

differential calculus will be simplified.

, Orthogonality, TVL, Data Memory Request, Computing Time

Orthogonality is a special property of Boolean functions because an orthogonal function can be

transformed in another form and so it simplifies the handling for further calculations in

applications of electrical engineering. For example, the orthogonal form of a disjunctive form is

equal to the orthogonal form of an antivalent form, ������� 	
������ . This work shows new

orthogonalizing methods, which means a new method of OR-ing as well as a method for building

the difference of minterms respectively ternary-vectors (TV) or functions respectively ternary

lists (TVL) of disjunctive normal form which result in orthogonal form. On the one hand,

the method “othogonalizing difference-building ⊝” is similar to the usual difference

ved from the set theory, but, on the other hand, it provides orthogonal results. It also enables

the replacement of EXOR and EXNOR of two minterms (also TVs) or two functions (also

TVLs). Thus, orthogonal results can be achieved which has essential advantage for further

calculation in particular in the area of TVL-arithmetic. The other method “orthogonalizing OR

offers the logical disjunction of two minterms respectively two TVs with the characteristic

of the resulting in orthogonal form.

DOI : 10.5121/csit.2015.51102

Nuremberg, Germany

building” is

presented. It is used to calculate the difference, but also the complement of a function as well as

vectors or two functions

lists is presented. On the basis of this new method a further

is going to be introduced. The

in an orthogonal

form that has an essential advantage for continuing calculations. Since it applies, an orthogonal

disjunctive normal form is equal to orthogonal antivalence normal form, subsequent Boolean

Orthogonality is a special property of Boolean functions because an orthogonal function can be

transformed in another form and so it simplifies the handling for further calculations in

m of a disjunctive form is

. This work shows new

ing as well as a method for building

vectors (TV) or functions respectively ternary-

lists (TVL) of disjunctive normal form which result in orthogonal form. On the one hand,

” is similar to the usual difference-building

ved from the set theory, but, on the other hand, it provides orthogonal results. It also enables

the replacement of EXOR and EXNOR of two minterms (also TVs) or two functions (also

ge for further

arithmetic. The other method “orthogonalizing OR-

offers the logical disjunction of two minterms respectively two TVs with the characteristic

10 Computer Science & Information Technology (CS & IT)

2. THEORETICAL FOUNDATIONS

2.1. Isomorphism: Set Theory as Basis for Switching Algebra

In Figure1a), the set difference from the set theory is shown. If the set difference is called�\�,

the remaining set of these two sets is the set of all elements belonging to set �, but not to set �

(�without �). In Figure1b), the union of set �� and ��, that is�� ∪ ��, is illustrated [2][3].

Figure 1: a) Set Difference �\�; b) Set Union �� ∪ ��

Due to the isomorphism the set difference and the set union out of the set theory are expressed in

the propositional logic as follows:

 �� 	 �\� 	 � ∩ �̅ ↣ � ∧ �̅ (1)

 �� 	 �� ∪ �� ↣ �� ∨ �� (2)

Thus, an Equation (3) to build the difference of two minterms in the switching algebra is defined

out of (1). The minuend minterm is indentified with�� ≔ ⋀ �������� ! , the subtrahend minterm

is indentified with �" ≔ ⋀ ���#���# ! and with $ ∈ ℕfollows:

��\�" 	 '(�������
� !)\'(���#���

!) ≔ '(�������
� !) ∧ '(���#���

# !)*************** 	

 	 '(�������
� !) ∧ '+�̅������

# !) 	 ,�� ⋅ ���� ⋅. .⋅ ��/� ∧ ,�� ⋅ ���� ⋅. .⋅ ��/"

(3)

An Equation (4) building the disjunction of two minterms where the first summand minterm is
identified with �"0 ≔ ⋀ ���#0���#0 ! and the second summand minterm is identified with �"1 ≔⋀ ���#1���#1 ! is defined out of (2). And with $ ∈ ℕ follows:

�"0 ∨ �"1 	 2(�������
#0 ! 3 ∨ 2(���#���

#1 ! 3 	 ,�� ⋅ ���� ⋅. .⋅ ��/"0 ∨ ,�� ⋅ ���� ⋅. .⋅ ��/"1

(4)

Equation (3) and (4) only indicate the value of the variable at the corresponding position in terms

of its index. That means �̅4is the complement value of variable at thei-th place, whereas�4 hows

the value of the variable at the i-th place. The general validity is proved by the method of

mathematical induction.

Computer Science & Information Technology (CS & IT) 11

2.2. Ternary-Vector-List (TVL)

Ternary-Vector-Lists are representations of Boolean functions which can take one of three

possible values for each point. A non-negated variable is characterized by ‘1’, a negated by ‘0’

and not included by ‘-‘. Boolean equations represented by TVL can be treated computationally

easier [5][10]. A TVL consists of m-rows (number of conjunctions or disjunctions contained in

the function) and n-columns (number of independent variables) and is characterized with$ ∈ℕand 5 ∈ {0, 1, −}. Any form of a function, that means disjunctive form (DF), conjunctiveform

(KF), equivalent form (EF) and antivalence form (AF), can be represented as a TVL. As no

operators (∨, ∧,⨀,⨁) in the TVL presentation are given, the designations of the matrix by D(f),

K(f), E(f) and A(f) show the type of the TVL [5][10][12].

 �� … ����

?@A 	 B?@�?@�∶?@�D ≔
1. EFG2. EFG∶�. EFG B

5��5��∶5��
……∶…
5��5��∶ 5��

5��5��∶5��D 	 [5��]

(5)

The rule for AND-ing (∧) of two TVs (?@4,K) which represent an average TV (?@L), is defined by

Table 1:

Table 1. Rule for AND-ing of two TVs

 ∧ 0 1 -

0 0 × 0

1 × 1 1

- 0 1 -

 if × ≥ 1

 else

×: empty set ?@L 	×
 ?@L 	 ?@4 ∧ ?@K

The rule for OR-ing (∨) of two TVs (?@4,K), which represent the union of both TVs, is defined as

follows: ?@4 ∨ ?@K 	 Y?@4?@KZ (6)

The difference-building of two TVs with ?@� 	 [5�, 5���, . . , 5�]� and ?@" 	 [5�, 5���, . . , 5�]" is

distinguished out of Equation (3):

 ?@�\ ?@" 	 [5�, 5���, . . , 5�]�\ [5�, 5���, . . , 5�]" ≔ [5�, 5���, . . , 5�]� ∧ [5�, 5���, . . , 5�]"******************** 	

	 [5�, 5���, . . , 5�]� ∧ B5�̅ −− 5���******⋮− ⋮−
… −… −⋮… ⋮5�̅D"

(7)

2.3. Orthogonality

A function or TVL is orthogonal if its minterms respectively its TVs are disjoint to one another in

pairs at least in one column. Consequently, these minterms (�4,K) or these TVs (?@4,K) then have

no common covering after their logical conjunction. An orthogonal function has no redundant

minterm. Thus, the following Equations in (8) can be formulated for the proof of orthogonality

[17]:

12 Computer Science & Information Technology (CS & IT)

3. ORTHOGONALIZING D

3.1. Method

The method of orthogonalizing difference

corresponds to the removal of the intersection which is formed between the minuend

subtrahend �", from the minuend

several disjoint minterms, which cover all of the remaining 1s an

other. For this purpose, an example is shown in a K

group of 2 (subtrahend: �\����) is subtracted from group of 8 (minuend:

of several blocks (1
st
 Block, 2

nd
 Block, 3

 �]̂_`abcad⊝ �\efbghijkcad
• The first literal of the subtrahend, here

minterm of the minuend, here

• Then the second literal, here

minuend and to the first literal �]�\��***.
• Following the next literal, hier

the minuend and to the first literal

third block of the difference is

• This process is continued until all literals of the subtrahend are singly complemented and

linked by AND-ing to the minuend in a separate minterm.

The Equation (9) is applied to calculate the orthogonalizing difference

In this case, the formula does not show the value of the individual literals, but it shows whether

the associated literal exists complement or not. The indices declare only the order of literals

which have to be calculated. In thi

formed from [18] is applied to describe the orthogonalizing difference

mathematically easier way:

Computer Science & Information Technology (CS & IT)

DIFFERENCE-BUILDING ⊝

The method of orthogonalizing difference-building ⊝ illustrated in the Karnaugh map (Fig

corresponds to the removal of the intersection which is formed between the minuend

from the minuend ��, which means ��\ ,�� ∧ �"/. The result consists of

several disjoint minterms, which cover all of the remaining 1s and are pairwise orthogonal to each

other. For this purpose, an example is shown in a K-map with 4 variables (Fig. 2

) is subtracted from group of 8 (minuend: �]). The resu

Block, 3
rd

 Block) which are pairwise orthogonal to each other.

Figure 2: Example of ⊝ in a K-map

�\����elmlnfbghijkcad 	 �]�***o�pqrstuv ∨ �]�\��***elmln�wxrstuv ∨ �]�\����***ellmlln\yxrstuvelllllllllmlllllllllnz`{{cicauc

The first literal of the subtrahend, here �\, is taken complement and AND

minterm of the minuend, here �]. Consequently, the first block of the difference is

Then the second literal, here��, is taken complement and AND-ing to the minterm of the

minuend and to the first literal �\ of the subtrahend. Therefore, the second block is

Following the next literal, hier ��, is taken complement and AND-ing to the minterm of

the minuend and to the first literal �\ and second literal �� of the subtrahend. Thus, the

of the difference is �]�\����***.
This process is continued until all literals of the subtrahend are singly complemented and

ing to the minuend in a separate minterm.

is applied to calculate the orthogonalizing difference-building of two minterms.

In this case, the formula does not show the value of the individual literals, but it shows whether

the associated literal exists complement or not. The indices declare only the order of literals

which have to be calculated. In this case, the formula ,⋁ �}~��4 � 	 ��*** ∨ ����*** ∨. .∨
formed from [18] is applied to describe the orthogonalizing difference-building in a

illustrated in the Karnaugh map (Fig. 2)

corresponds to the removal of the intersection which is formed between the minuend ��and the

The result consists of

d are pairwise orthogonal to each

. 2),in which a

). The result consists

Block) which are pairwise orthogonal to each other.

, is taken complement and AND-ing to the

. Consequently, the first block of the difference is �]�***.
ing to the minterm of the

of the subtrahend. Therefore, the second block is

ing to the minterm of

of the subtrahend. Thus, the

This process is continued until all literals of the subtrahend are singly complemented and

building of two minterms.

In this case, the formula does not show the value of the individual literals, but it shows whether

the associated literal exists complement or not. The indices declare only the order of literals * ∨ ���� ⋅. .⋅ ��***/
building in a

Computer Science & Information Technology (CS & IT) 13

 ��⊝�" 	 '(�������
� !)⊝ '(���#���

!) ≔ '(�������
� !) ∧ 2+ �̅��#����

# ! 3 	

 	 ,�� ⋅ ���� ⋅. .⋅ ��/� ∧ ,�̅� ∨ ���̅��� ∨. .∨ �� ⋅ ���� ⋅. .⋅ ��/" (9)

The result may differ depending on the starting literal. There are many equivalent options. They

only differ in the form of coverage. The minterms of the difference are pairwise disjoint to each

other, so that the result is already availabe in an orthogonal form. The the result corresponds to

the minuend if the subtrahend is already orthogonal to the minuend (�� ⊥ �"):

 ��:�" ⊈ ������:��⊝�" 	 �� (10)

The number of the minterms (blocks) in the result called $ corresponds to the number of the

variables presented in the subtrahend and are not presented in the minuend at the same time. The

number of the possible results can be defined by $! for $ > 0. The orthogonalizing difference-

building of two TVs (?@� , ?@"), is defined by a corresponding Equation (11):

 ?@�⊝ ?@" 	 [5�, 5���, . . , 5�]�⊝ [5�, 5���, . . , 5�]" ≔
 	 [5�, 5���, . . , 5�]� ∧ B5�̅ −5� 5���******⋮5� ⋮5$

… −… −⋮… ⋮5�̅D"

(11)

By the use of this new method, two calculation procedures - building the difference and the

subsequent orthogonalization - can be performed in one step. That means that the orthogonalizing

difference-building ⊝represents the composition of the difference-building \and the subsequent

orthogonalization Orth [6].

3.2. Analysis

3.2.1. Mathematical

The general validity is proved by mathematical induction:

Basis: n = 1

 '(���� ���
� !) ∧ '+�̅��# ���

# !) 	 ,��/� ∧ ,�̅�/"

 ,��/� ∧ ,�̅�/" 	 ,��/� ∧ ,�̅�/"

Statement is true:

Inductive step: n = n + 1

 '(�,���/�� �
� !) ∧ 2+�̅,���/�# ��

# ! 3 	 ��,���/������. . ���� ∧ ��̅,���/ ∨ �,���/,�̅� ∨ ���̅��� ∨. .∨ �� ⋅. .⋅ ��/�"

 '�,���/(�������
� !) ∧ 2�̅,���/ ∨ �,���/ + �̅��#����

# ! 3 	 '�,���/(�������
� !) ∧ 2�̅,���/ ∨ �,���/ + �̅��#����

! 3

The new Equation (3) is equated with the usual Equation (9) to show the equivalence. Since the

term of the minuend (⋀ �������� !) is equal on both sides, it can be neglected:

14 Computer Science & Information Technology (CS & IT)

 '+��#
 �̅� ∨ �̅���
Due to the axiom of absorption with

confirmed. They only differ in their form of coverage. The right side is the orthogonal form of the

left side. This proves that the orthogonalizing difference

the difference-building derived out of the set theory.

3.2.2. Computing Time

A study between usual and new method in computing time depe

(dimension���[�]) of the minuend and subtrahend indicates almost identical co

The new method (orth_Diff) has a slightly longer computing time with increasing dimension than

the method of difference-building (

shows a maximum difference of just 1.2

complexity. The supplementation instruction per loop iteration results in a multiplicative

constant which explains the minimal difference. Against it, the results are orthogonal. The

comparison in Figure 3 illustrates that the method

increasing dimension ���[�] as the composition of method

orthogonalizing Orth [19].

Figure 3: Comparison of computing time of

In Diagram (Fig. 4) the explanation for the higher computing time of the composition is provided.

With increasing dimension the computing

Diff decreases with respect to the composition. In dimension

same percentage value of the whole computing time. Thereafter, the percentage value of

low and at the same time the percentage value of

Computer Science & Information Technology (CS & IT)

'+�̅��#��
 !) 	 2+ �̅��#����

! 3

� ∨. .∨ �̅� 	 �̅� ∨ ���̅��� ∨. .∨ ������ ⋅. .⋅ ���̅�

Due to the axiom of absorption with �}~ ∨ �4��~ 	 �}~ ∨ ��~ , the equivalence between two methods is

confirmed. They only differ in their form of coverage. The right side is the orthogonal form of the

proves that the orthogonalizing difference-building supplies equivalent results as

building derived out of the set theory.

A study between usual and new method in computing time depending on the length

of the minuend and subtrahend indicates almost identical computing times.

has a slightly longer computing time with increasing dimension than

building (Diff). The comparison of the average values of both methods

shows a maximum difference of just 1.2µs, which can be explained by the consideration

The supplementation instruction per loop iteration results in a multiplicative

the minimal difference. Against it, the results are orthogonal. The

illustrates that the method orth_Diff has faster computing] as the composition of method Diff and the subsequent method of

Figure 3: Comparison of computing time of orth_Diff⊝ and composition of Diff and

) the explanation for the higher computing time of the composition is provided.

With increasing dimension the computing time of the method Orth increases, whereas the method

decreases with respect to the composition. In dimension ���[14] both functions have the

same percentage value of the whole computing time. Thereafter, the percentage value of

the same time the percentage value of Orthincreases.

, the equivalence between two methods is

confirmed. They only differ in their form of coverage. The right side is the orthogonal form of the

building supplies equivalent results as

nding on the length

mputing times.

has a slightly longer computing time with increasing dimension than

The comparison of the average values of both methods

, which can be explained by the consideration

The supplementation instruction per loop iteration results in a multiplicative

the minimal difference. Against it, the results are orthogonal. The

has faster computing time with

uent method of

and Orth

) the explanation for the higher computing time of the composition is provided.

increases, whereas the method

both functions have the

same percentage value of the whole computing time. Thereafter, the percentage value of Diffruns

Computer Science & Information Technology (CS & IT)

Figure 4: Percentage value of whole computing of

At the dimension���[50]the share of computing time of

percentage value of Diffis 6.7 %. Finally,

the new method orth_Diff brings a significant advantage due to the orthogonal results [19].

3.2.3. Complexity

The complexity of both methods is analyzed by the evaluation of their implemented functions.

The dimension of the inserted minterms respectively ternary

size �. Figure 5 shows the pseudocode of

according to the rules of the

accordingly comparisons and two inte

complexity is �,��/ [19]. The complexity of the function

not required and may be replaced by three linear operations with the complexity of

Figure 5

However, the additive and multiplicative constants have no influence on th

omitted for this reason. Although the total complexity of the usual method is minor but it

increases in total by an additional code for orthogonalization.

Computer Science & Information Technology (CS & IT)

Percentage value of whole computing of Diff and Orth

the share of computing time of Orth is already 93.7

%. Finally, the measurement of computing time demonstrates that

brings a significant advantage due to the orthogonal results [19].

The complexity of both methods is analyzed by the evaluation of their implemented functions.

The dimension of the inserted minterms respectively ternary-vectors is determined as the input

shows the pseudocode of orth_Diff. For the function orth_Diff

according to the rules of the �-calculus many complexities of �,1/ for instructions and

accordingly comparisons and two interleaved nested complexities of�,1/. As the result, the total

[19]. The complexity of the function Diff is �,�/ because the inner loops are

not required and may be replaced by three linear operations with the complexity of �

5: Pseudocode of orth_Diff with complexity

However, the additive and multiplicative constants have no influence on the complexity and are

omitted for this reason. Although the total complexity of the usual method is minor but it

increases in total by an additional code for orthogonalization.

 15

is already 93.7 % and the

the measurement of computing time demonstrates that

brings a significant advantage due to the orthogonal results [19].

The complexity of both methods is analyzed by the evaluation of their implemented functions.

s determined as the input

orth_Diff is obtained

for instructions and

esult, the total

because the inner loops are �,1/ (Fig. 6).

e complexity and are

omitted for this reason. Although the total complexity of the usual method is minor but it

16 Computer Science & Information Technology (CS & IT)

Figure 6: Pseudocode of Diff with complexity

3.2.4. Data Memory Request

First, the memory request of the data structures TV and TVL is determined for this comparison

[19]. A TV consists of an array of � ⋅ byte elements. Each byte represents an element of the

ternary variables. This means that the memory request of the data structures depends on the

dimension of the ternary variables. In C# the data type Byte consists of 8Bits. For a 64 bit system

a minimum memory request ����,�/for the data structure of TV with an addressing pointer is

calculated by:

 ����,�/ 	 � ⋅ 8 ��5�ellmlln�⋅������ �����# + 32 ��5�elmln£�4���� ¤� �� (12)

Since a TVL consists of a list of TVs. The memory request of a TVL depends on the number of

ternary variables and also the number of the consisting TVs called ¥. The easiest way to

implement a list is the use of a linked list. Each entry in the list has a pointer at its follower. Thus,

a minimal memory request ����¦,¥,�/is calculated by:

 ����¦,¥,�/ 	 ¥ ⋅ ����,�/ + 32 ��5�elmln£�4���� ¤� ��¦ (13)

For this reason, the minimal total memory request����� for the operation of two TVs, the

difference-building and orthogonalizing difference-building in this case is:

 ����� 	 2 ⋅ ����,�/elllmllln��§&��© + ����¦,¥,�/elllmlllnª�#« ����¦ (14)

The theoretical memory request has to be calculated equally for both function. Because of that,

they have the same minimal memory request. Addional memory request for a function for

orthogonalization is not needed, because an orthogonal TVL of the orthogonalizing difference is

already provided. That shows that the new method, which is the composition of two functions has

the advantage of reducing the memory request in addition to faster computing time. The minimal

theoretical memory request depending on the dimension ���[�]and the number of n which

primarily affects the memory usage is illustrated in Figure 7. Thereby, ���[�] is varied at a

constant n and afterwards in the reverse case and analyzed on memory request. For

constant���[�]and changing $the memory usage is higher than in the reverse case. It

applies∆�����,$/ 	 ∆�����,���[�]/.

Computer Science & Information Technology (CS & IT)

Figure 7: Minimal theoretical memory request

3.3. Applications of Orthogonalizing Difference

3.3.1. Orthogonalizing Difference

By Equation (14) (presented in TVL

it is possible to calculate an orthogonal difference of two functions respectively two TVLs. One

of them is the minuend function

subtrahend function ­". The minuend is subducted the common set of subtrahend and minuend;

the result is represented in an orthogonal form. The associated minterms (TVs) have the

corresponding index-notation, which means

subtrahend:

 ��­������ ⊝ �,­"/ 	 B?@��?@��∶?@��

 	 B ,?@�,?@�,?@��

In this case it is important to stress that any outcome of each individual

considered. That means, if the combination of

complete the appropriate row to 0

building has already been proved in general validity, there is no need proof for generel validity in

this case, because all the single links are generally valid. Therefore, out of logical conclusion,

Equation (14) is generally valid. If two functions are disjoint to each other (

difference cannot be formed and it follows:

 ��

Computer Science & Information Technology (CS & IT)

Figure 7: Minimal theoretical memory request

Applications of Orthogonalizing Difference-Building

Difference-Building of two Functions

(presented in TVL-arithmetic) based on the orthogonalizing difference

it is possible to calculate an orthogonal difference of two functions respectively two TVLs. One

ion ­�����which has to be orthogonal and the other one is the

. The minuend is subducted the common set of subtrahend and minuend;

the result is represented in an orthogonal form. The associated minterms (TVs) have the

notation, which means � stands for the minuend and � stands for the

��
��
D ⊝ B?@�"?@�"∶?@�"D : 	

, ��⊝?@�"/ ∧ ,?@��⊝?@�"/ ∧. .∧ ,?@��⊝?@�", ��⊝?@�"/ ∧ ,?@��⊝?@�"/ ∧. .∧ ,?@��⊝?@�"∶, ��⊝?@�"/ ∧ ,?@��⊝?@�"/ ∧. .∧ ,?@��⊝?@�"
In this case it is important to stress that any outcome of each individual ⊝-linkings has to be

considered. That means, if the combination of ,?@��⊝?@�"/ 	 0 arises for example, this will

omplete the appropriate row to 0 because of: �4 ∧ 0 	 0. Since the orthogonalizing difference

building has already been proved in general validity, there is no need proof for generel validity in

ingle links are generally valid. Therefore, out of logical conclusion,

is generally valid. If two functions are disjoint to each other (­�
difference cannot be formed and it follows:

��: ­" ⊈ ­�����: ­�⊝­" 	 ­�

 17

arithmetic) based on the orthogonalizing difference-building

it is possible to calculate an orthogonal difference of two functions respectively two TVLs. One

which has to be orthogonal and the other one is the

. The minuend is subducted the common set of subtrahend and minuend;

the result is represented in an orthogonal form. The associated minterms (TVs) have the

stands for the

//
�"/D

(14)

linkings has to be

arises for example, this will

Since the orthogonalizing difference-

building has already been proved in general validity, there is no need proof for generel validity in

ingle links are generally valid. Therefore, out of logical conclusion, ⊥ ­") then a

(15)

18 Computer Science & Information Technology (CS & IT)

3.3.2. Orthogonal Complement of a Function

A further application is the building of an orthogonal complement of a function of the disjunctive

normal form. In the set theory the set difference of universal set ®and a set
corresponds to set
̅which is the complement of the given set
:

 ® \
 	
̅ → ® ∩
̅ 	
̅ (16)

Transferred to the switching (Boolean) algebra the complement of a function ­,̅�/ can be

determined from the difference of a unit function ­��� 	 1 and the function ­,�/:

 ­,1/ \­,�/ 	 ­̅,�/ → ­,1/ ∧ ­,̅�/ 	 ­,̅�/ (17)

As both methods are equivalent, Equation (17) can be formulated with ⊝ to find out an

orthogonal complement:

 ­,1/ ⊝ ­,�/ 	 ­�̅������or �,1/ ⊝ �,­/ 	 �,­̅����/ (18)

3.3.3. Orthogonal EXOR of two Functions

The EXOR-operation of two minterms �4,Kand also of two functions ­4,Kcan be calculated as:

 ­4⊕­K 	 ­4­K̅ ∨ ­4̅­K 	

 	 ,­4 ∨ ­K/ ∧ ,­4̅ ∨ ­K̅/ 	

 	 ,­4 ∨ ­K/ ∧ ,­} ∧ ­�/********** 	

 	 ,­4 ∨ ­K/\,­4 ∧ ­K/ 	 (19)

It may be formulated with ⊝ due to the equivalence to get orthogonal result:

 ­4⊕­K 	 ,­4 ∨ ­K/⊝ ,­4 ∧ ­K/ (20)

By AND-ing and OR-ing of the functions ­4,Kan inherent relation between these two functions is

constructed.Thus, the minuend function does not need to be orthogonal. The advantage is the

orthogonal result again. By using ⊝ the difficulties which arise with the building of the

complement of a function are circumvented. The form of the function changes by building the

complement and the transformation back to its original form requires a more sophisticated

calculation.

3.3.4. Orthogonal EXNOR of two Functions

The EXNOR-operation of two minterms �4,Kor two function­4,Kis basically the complement of the

EXOR-operation of the same minterms or functions. The EXNOR can be expressed by the

complement of EXOR, which also can be formulated by using ⊝. Accordingly, the result is

orthogonal:

 ­4 ⊙ ­K 	 ­}⊕­�********* 	 ­,1/ ⊝ �­4⊕ ­K� 	 ­,1/ ⊝ [,­4 ∨ ­K/⊝ ,­4 ∧ ­K/] (21)

Computer Science & Information Technology (CS & IT) 19

v

3.3.5. Orthogonalizing OR-ing

Another method, the orthogonalizing OR-ing, which is based on the orthogonalizing difference-

building, is formed in the following. The orthogonalizing OR-ing is a variant of building the

disjunction of two summand-minterms (��, ��) whereby the result is orthogonal. Orthogonalizing

OR-ing is going to be explained by an example in a K-map with 4 variables (Fig. 8). Two

summand-minterms (a group of 8 and a group of 4) are orthogonalizing OR-ed and a result

consisting of several blocks appears; the several blocks are pairwise orthogonal to each other.

Figure 8: Orthogonalizing OR-ing in K-map

The idea out of the K-map is noted as propositional logic which a Boolean form is going to be

derived. By the use of orthogonalizing OR-ing, the intersection set of first and second summand-

minterm (��, ��) is removed from the first summand-minterm ��and the second summand-

minterm �� is linked by a disjunction to that subtraction:

The Boolean form of orthogonalizing OR-ing of two minterms �"0 	 ⋀ ���"0���"0 ! and �"0 	 ⋀ ���"1���"1 ! is defined by Equation (24), which does not give the value of separate literals, but it

shows whether the value of the variable is complement or not. The indices only indicate the order

of the variables to be calculated:

20 Computer Science & Information Technology (CS & IT)

v

By swapping the two summands in their position, the result changes. Both solutions, however, are

equivalent because the same set is covered. They only differ in the form of coverage which also

be seen in Figure 8, in which both possible solutions are presented. But in order to represent the

orthogonal result with a minimum of minterms to work in the TVL-representation with low

memory request, the summand-minterm with more literals has to be accepted as the first

summand-minterm,because the commutativity applies for and also for ⊝. The following

Equation (25) is used for the orthogonalizing OR-ing of two ternary vectors ?@"0 	 [5� , 5���, . . , 5�]"0and ?@"1 	 [5�, 5���, . . , 5�]"1:

The number of the minterms in the result called $ corresponds to the number of the variables

presented in the second summand �"1 and are not presented in the first summand �"0at the same

time; plus1 for the second summand �"1 as the last linked minterm. The number of the possible

results can be charged by $!for $ > 0. Depending on the starting literal the result may differ.

There are many equivalent options which only differ only in the form of coverage. If both

minterms are disjoint (orthogonal) to each other, the result corresponds to the disjunction of both

minterms:

By the use of orthogonalizing OR-ing , two calculation procedures - OR-ing and subsequent

orthogonalizing - can be performed in one step. That means that the orthogonalizing OR-ing

is the composition of OR-ing (∨) and the subsequent orthogonalization Orth.

It is not necessary to prove this method for general validity because it includes the already general

method of orthogonalization difference-building. The Equations (23) and (2) are equalized to

indicate the equivalence of orthogonalization OR-ing and usual OR-ing:

 ����*** ∨ �� 	 �� ∨ �� (27)

Due to the axiom of the absorption the equivalence is verified. The right side is the orthogonal

form of the left side which means they only differ in the form of coverage. So, the results of both

sides are equal.

Computer Science & Information Technology (CS & IT) 21

4. CONCLUSION

This work shows that the method of the orthogonalizing difference-building is generally valid and

is also equivalent to the usual method of difference-building. In contrast to the composition,

orthogonalizing difference-building has faster computing time with increasing dimension. In

addition, the method does not require additional memory request for an additional function for

orthogonalization because this method already provides orthogonal results. The orthogonalizing

difference-building is used to calculate the orthogonal difference of two minterms respectively

two TVs, two functions or two TVLs. It is also employed to determine the complement of a

function as well as the EXOR and EXNOR of two functions to achieve an orthogonal result.

Another method, the orthogonalizing OR-ing of two minterms or TVs, is developed out of the

orthogonalizing difference-building. The application of ternary-vector-list is amplified by these

new methods to implement simple and quick elementary functions. Due to the inner

orthogonalization further processing steps in the TVL arithmetic are considerably simplified

because the orthogonal form of disjunctive normal form has the advantage to consider it as

antivalence normal form. Thus, additional calculation such as the differential calculus are

remarkably facilitated.

REFERENCES

[1] Zander, H. J.: Logischer Entwurf binärer Systeme. 3. bearb. Auflage. Berlin, Germany: Verl.Technik,

1989, ISBN 3-341-00526-9.

[2] Bronstein, I.N.; Semendjajew, K.A.; Musiol, G.; Mühlig, H.:Taschenbuch der Mathematik. 7.

vollständig überarbeitete und ergänzte Auflage. Frankfurt am Main, Germany: wissenschaftlicher

Verl. Harri Deutsch GmbH, 2008, ISBN 978-3-8171-2007-9.

[3] Popula, L.: Mathematik für Ingenieure und Naturwissenschaften, Band 1. 13. durchgelesene Auflage.

Wiesbaden, Germany: Viewer + Teubner Verlag | Springer Fachmedien. Wiesbaden GmbH, 2011,

ISBN 978-3-8348-1749-5.

[4] Matthes, W.: Datenzugriffsprinzipien in objektorientierten Rechnerarchitekturen. Preprint.

Technische Universität Karl-Marx-Stadt (Chemnitz), 1989.

[5] Matthes, W.: Spezielle Hardware zur Verarbeitung von Ternärvektorlisten. Dissertation. Technische

Universität Karl-Marx-Stadt (Chemnitz), 1987.

[6] Posthoff, Ch.; Steinbach, B.: Binäre Gleichungen - Algorithmen und Programme.wissenschaftliche

Schriftreiche. Technische Universität Karl-Marx-Stadt (Chemnitz), 1979.

[7] Posthoff, Ch.; Steinbach, B.: Binäre dynamische Systeme - Algorithmen und Programme.

wissenschaftliche Schriftenreihe. Technischen Hochschule Karl-Marx-Stadt (Chemnitz), 1979.

[8] Posthoff, Ch.; Steinbach, B.: Binäre dynamische Systeme. Berlin: Oldenbourg R. Verlag GmbH,

1981, ISBN 348625071X.

[9] Bochmann, D.; Zakrevskij, A.D.; Posthoff, Ch.: Boolesche Gleichungen. Theorie - Anwendungen -

Algorithmen.Berlin: VEB Verlag Technik, 1984, ISBN 3211958150.

[10] Kühnrich, M.: Ternärvektorlisten und deren Anwendung auf binäre Schaltnetzwerke. Dissertation.

Technische Hochschule Karl-Marx-Stadt (Chemnitz), 1979.

[11] Posthoff, C.; Bochmann, D.; Haubold, K.: Diskrete Mathematik. 1. Auflage. Leipzig, DDR: BSB

Teubner, 1986, ISSN 0465-3769.

[12] Kempe, G.: Tupel von TVL als Datenstruktur für Boolesche Funktionen. Dissertation (A). Technische

Universität Bergakademie Freiberg, 2003.

[13] Whitesitt, J.E.: Boolesche Algebra und Ihre Anwendungen. Band 3. Braunschweig, Germany: Friedr.

Vieweg + Sohn GmbH, 1969.

[14] Pomberger, G.; Dobler, H.: Algorithmen und Datenstrukturen - eine systematische Einführung in die

Programmierung. 1. Auflage. München, Germany: Addison-Wesley Verlag, 2008, ISBN-10:

3827372682.

[15] Saake, G.; Sattler, K.-U.: Algorithmen und Datenstrukturen - Eine Einführung mit Java. 3. Auflage.

Heidelberg, Germany: dpunkt.verlag GmbH, 2006, ISBN-10: 3898643859.

[16] Wagenknecht, Ch.: Algorithmen und Komplexität. 1. Auflage. Leipzig, Germany: Carl Hanser Verlag

GmbH \& Co. KG, 2003, ISBN-10: 3446223142.

22 Computer Science & Information Technology (CS & IT)

[17] Bochmann, D.: Binäre Systeme. Ein BOOLEAN Buch. Hagen, Germany: LiLoLe-Verlag GmbH,

2006, ISBN 3-934447-10-4.

[18] Crama, Y.; Hammer, P.L.: Boolean Functions. Theory, Algorithms, and Applications.New York,

USA: Cambridge University Press, 2011, ISBN 978-0-521-84751-3.

[19] Kassim,H.; Can, Y.; Sattler, M.S.:Untersuchung eines neuen Algorithmus zur Berechnung

orthogonalisierter Differenz. Bachelor-Thesis, Lehrstuhl für Zuverlässige Schaltungen und Systeme,

Friedrich-Alexander-Universität Erlangen Nürnberg, Germany, 2014.

[20] Can, Y.; Fischer, G.: Orthogonalizing Boolean Subtraction of Minterms or Ternary Vektors.

International Conference on Computational and Experimental Science and Engineering

(ICCESEN2014), 24-29 October, 2014, Antalya-Turkey.

AUTHORS

Yavuz Can was born in Erlangen, Germany, in 1979. He received his Diploma (Dipl.-

Ing.) degree in me-chatronics from Friedrich-Alexander-University Erlan-gen-Nürnberg,

Germany, in 2010. He is currently a Research Assistant of Prof. Georg Fischer working

toward his Ph.D. degree in the Institute for Electronics Engineering at Friedrich-

Alexander University in Erlangen. His research interest include orthogonality of Boolean

functions and Ternary-Vector-List.

Georg Fischer was born in Lower Rhine region, Germany, in 1965. He received the

Diploma degree in electrical engineering with focus on communications, micro-wave and

electro-dynamics from RWTH Aachen University, Aachen, Germany, in 1992, and the

Dr.-Ing. degree in electrical engineering from the University of Paderborn, Paderborn,

Germany, in 1997. From 1993 to 1996, he was a Research Assistant with the University of

Paderborn, where he was involved with adaptive antenna array systems for mobile

satellite communications. From 1996 to 2008, he performed research with Bell Laboratories, Lucent (later

Alcatel-Lucent), where he focused on the RF and digital architecture of mobile communication base

stations for global system for mobile communications (GSM), Universal Mobile Telecommunications

System (UMTS), and features for network coverage and capacity enhancements. In 2000, he became a Bell

Labs Distinguished Member of Technical Staff (DMTS), and in 2001, a Bell Labs Consulting Member of

Technical Staff (CMTS). He was also a Chairman with the European Telecommunications Standards

Institute (ETSI) during the physical layer standardization of the GSM-EDGE system. From 2001 to 2007,

he was a Part-Time Lecturer with the University of Erlangen–Nuremberg, Erlangen, Germany, during

which time he lectured on base station RF and digital technology. Since April 2008, he has been a Professor

of electronics engineering with the University of Erlangen–Nuremberg. He holds over 50 patents

concerning microwave and communications technology. His research interests are in transceiver design,

analog/digital partitioning, digital signal processing, converters, enhanced amplifier architectures, duplex

filters, metamaterial structures, GaN transistor technology and circuit design, and RF

microelectromechanical systems (MEMS) with specific emphasis on frequency agile, tunable, and

reconfigurable RF systems for software-define radio (SDR) and cognitive radio (CR) applications. His new

research interests concentrate on medical electronics like using microwaves for detection of vital

parameters. Georg Fischer is a Senior Member of the IEEE Microwave Theory and Techniques Society

(MTT-S)/Antennas and Propagation Society (AP-S)/Communications Society (COMSOC)/ Vehicular

Technology Society (VTC) and Engineering in Medicine and Biology Society (EMBS). He is a member of

VDE-ITG and the European Microwave Association (EUMA). He was the co-chair of the European

Conference on Wireless Technology (ECWT) of European Microwave Week Conference (EUMW 2007).

For EUMW 2013, Nuremberg, Germany and GeMiC 2015, Nuremberg, Germany he has served as the

General Technical Program Committee (TPC) chairman.

